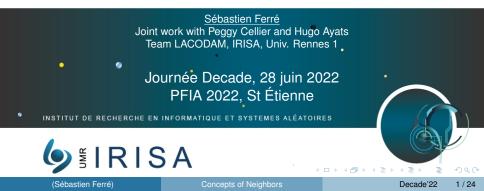
Instance-based Reasoning in Knowledge Graphs with Concepts of Neighbors



Scope of the Talk

• Knowledge Graphs (KG)

- RDF graphs, possibly extended with n-ary relations
- light RDFS-like ontologies (or none)

"Instance-based Reasoning"

- local forms of knowledge discovery and machine learning reasoning about entities by comparing them with other entities
- like k-NN classification but with graph patterns as distances the same graph patterns as in SPARQL queries

Compared to querying (SPARQL) and logical inference (RDFS)

- same representations: graph patterns, queries, and rules
- uncertain/statistical reasoning vs certain/logical reasoning

Overview

Instance-based reasoning questions considered in this talk:

- Notations
 - entities *e*, classes *c*, relations *r*, queries $Q = [x \leftarrow P]$
 - Q(e) for "entity e is an answer of query Q"
 - ?x for unknowns
- $?Q(e_1) \land ?Q(e_2)$: generalization
 - ▶ What do e₁ and e₂ have in common, as a query Q?
- $?Q(e_1) \land ?Q(?e_2)$: similarity search
 - ▶ Which entities e₂ are similar to e₁, with Q as similarity measure?
- *r*(*e*₁, ?*e*₂) or *r*(?*e*₂, *e*₁): link prediction
 - ▶ Which entity e₂ is linked to e₁ via relation r?
 - a special case of KG completion
 - * ? $c(e_1)$: What is the class of e_1 ?
 - * $?r(e_1, ?e_2), ?r(?e_2, e_1)$: What relations connect to e_1 ?
 - * $?r(e_1, e_2)$: What relation relates e_1 to e_2 ?

Existing Work

• Recent trend on representation learning, aka. embeddings

- best prediction accuracy on link prediction
- lack of explanation for inferences
- costly training, hence difficult with evolving data
- A long history of symbolic approaches
 - $\blacktriangleright \quad Concept \ Learning \rightarrow generalization$
 - * graphs are generally propositionalized into paths
 - or seen as rooted trees (no cycle)
 - * or collection of small graphs (e.g. molecules) [Kuznetsov 2013]
 - ► Relational Instance-Based Learning (RIBL) [Horváth 2001] → similarity
 - * on rooted trees, not on KG-like relational data
 - numerical measure (edit distance)
 - ► Inductive Logic Programming (ILP) [Muggleton 1995], Rule Mining (AMIE+ [Galárraga 2013], AnyBURL [Meilicke 2019]) → inference
 - * costly training, combinatorial search space, KGs are large

Instance-based Approach

• Reasoning principle:

- (1) e1: entity of interest
- (2) $?Q(e_1)$: generalizations from e_1
- (3) $Q(?e_2)$: entities similar to e_1 , matching some Q
- (4) $?c(e_2)$, $?r(e_2, ?e_3)$: known facts about similar entities
- (5) $c(e_1), r(e_1, e_3)$: inferred facts about e_1
- Formal Concept Analysis (FCA)
 - neat formalization of steps (2)-(3) (generalizations and similars)
 - concept = intension + extension
 - intension = what different objects have in common (2)
 - * extension = which other objects match the intension (3)
 - limited to tabular data, intensions are sets of attributes
- Graph-FCA: extends FCA to KGs [ICFCA'15, Discr.App.Math.'20]
 - concept intensions are queries (Q)
 - concept extensions are sets of (tuples of) entities (e)
 - close to RCA (Relational Concept Analysis) [Rouane-Hacène 2013]

Overview

- 1
 - From Knowledge Graphs to Graph Concepts
- 2 Generalization: Conceptual Distance
- Similarity Search: Concepts of Neighbours
- 4 Link Prediction
- 5 Application to Relation Extraction from Texts

Overview

From Knowledge Graphs to Graph Concepts

- 2 Generalization: Conceptual Distance
- 3 Similarity Search: Concepts of Neighbours
- 4 Link Prediction
- 5 Application to Relation Extraction from Texts

4 A N

Knowledge Graph

Entities + Relations/Classes + Triples

Diana Charles

William

Harry

George

Charlotte

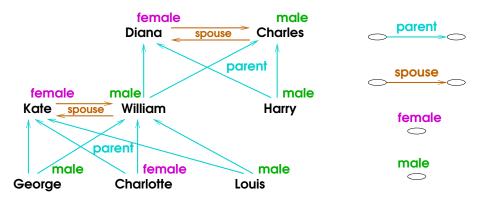
Louis

Knowledge Graph

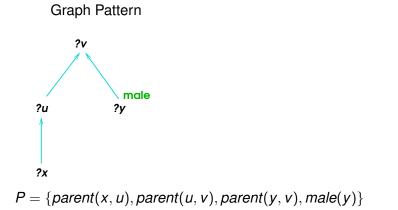
Entities + Relations/Classes + Triples

Knowledge Graph

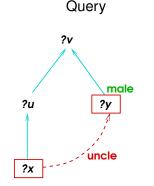
Entities + Relations/Classes + Triples



Graph Patterns, Queries, and Answers



Graph Patterns, Queries, and Answers



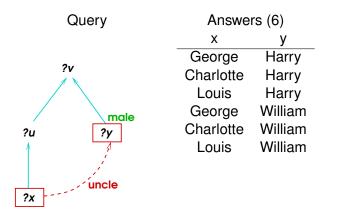
 $Q = [x, y \leftarrow parent(x, u), parent(u, v), parent(y, v), male(y)]$

(Sébastien Ferré)

Concepts of Neighbors

Decade'22 9 / 24

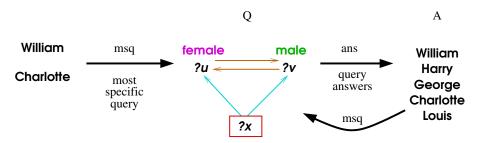
Graph Patterns, Queries, and Answers



 $Q = [x, y \leftarrow parent(x, u), parent(u, v), parent(y, v), male(y)]$ $A = \{(George, Harry), (Charlotte, Harry), ...\}$

Graph Concepts

Starting from two entities:



A graph concept is a pair (A, Q), satisfying:

- *A* = *ans*(*Q*): extension, set of concept instances
- Q = msq(A): intension, concept description

Overview

- From Knowledge Graphs to Graph Concepts
- 2 Generalization: Conceptual Distance
- 3 Similarity Search: Concepts of Neighbours
- 4 Link Prediction
- 5 Application to Relation Extraction from Texts

< 6 b

Conceptual Distance [IC'17]

Definition

The conceptual distance between two entities e_i , e_j is defined as the most specific graph concept that contains them: $\delta(e_i, e_j) = (A_{ij}, Q_{ij})$

• $Q_{ij} = msq(\{e_i, e_j\})$: what they have in common

this answers the question $Q(e_i) \land Q(e_j)$

• $A_{ij} = ans(Q_{ij}) \supseteq \{e_i, e_j\}$: which entities range between them

- δ is a symbolic distance (rather than numerical)
 - distances are only partially ordered (concept inclusion)
- δ verifies distance axioms (positivity, symmetry, triangular ineq.)
 - with empty concept as zero
 - with concept union as addition
- numerical measures can be derived
 - $dist(e_i, e_j) = |ext(\delta(e_i, e_j))|$: distance as number of answers
 - $sim(e_i, e_j) = |int(\delta(e_i, e_j))|$: similarity as size of the query

Example Conceptual Distances on Mondial

On Mondial: a geog	graphi	cal KG with 10k entities and 12k triples
e _i - e _j	dist	$int(\delta(e_i, e_j)) = Q = [x \leftarrow]$
Spanish - Catalan	3	Language(x), language(Spain,x), lan- guage(Andorra, x)
Tahiti - Hawaii	6	Island(x), type(x, "volcanic"), located- InWater(x, PacificOcean), belongsTols- lands(x, ?), locatedIn(x, ?), locatedOnIs- land(?, x)
Peru - Bolivia	2	Country(x), encompassed(x, America), ethnicGroup(x, Mestizo), ethnicGroup(x, European), language(x, Spanish), lan- guage(x, Quechua), language(x, Aymara), religion(x, RomanCatholic), religion(x, Protestant), wasDependentOf(x, Spain), government(x, ?), locatedIn(LakeTiticaca, x), neighbor(x, Brazil), neighbor(Brazil, x), neighbor(x, Chile), neighbor(Chile, x)

Overview

- From Knowledge Graphs to Graph Concepts
- 2 Generalization: Conceptual Distance
- Similarity Search: Concepts of Neighbours
- 4 Link Prediction
- 5 Application to Relation Extraction from Texts

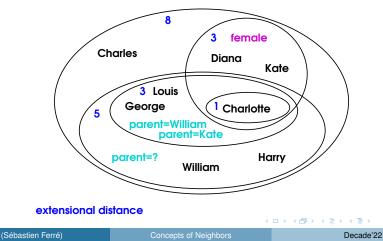
< 6 b

Concepts of Neighbours [IC'17]

Conceptual distances between an entity and all other entities:

$$\mathit{CN}(\mathit{e}) = \{ \delta(\mathit{e}, \mathit{e}') \mid \mathit{e}' \in \mathit{E} \}$$

Example for e = Charlotte (6 concepts of neighbors)



Example Similarity Searches on Mondial

Similar entities for a few seed entities, grouped by concept, in increasing extensional distance:

Peru	Spanish	Tahiti
Bolivia (2) *	English (2)	Mont Orohena (2)
Colombia (2) *	French (2)	Pacific Ocean (3)
Argentina (2) *	Guarani (2)	Hawaii, Hokkaido, (6)
Ecuador (2) *	Amerindian (2)	Bougainville, Gudalcanal, (12)
Panama (2) *	Miskito (2)	Taiwan, New Guinea (14)
	Catalan, Galician (3) ** Aymara, Quechua (3)	

- * same extensional distance / different concepts of neighbors
 ⇒ different similarities/explanations
- ** different entities / same concept of neighbors
 ⇒ same similarity/explanation

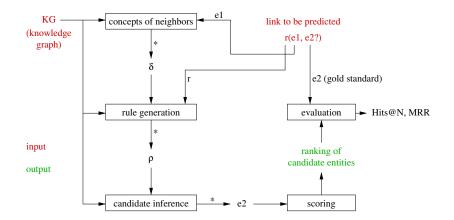
. . .

Overview

- From Knowledge Graphs to Graph Concepts
- 2 Generalization: Conceptual Distance
- 3 Similarity Search: Concepts of Neighbours
- 4 Link Prediction
- 5 Application to Relation Extraction from Texts

< 6 b

Link Prediction with Concepts of Neighbors [ESWC'19]



Generation of Inference Rules from Concepts

For each $\delta = (A, Q) \in CN(e_1)$, where $Q = [x \leftarrow P]$

• Two kinds of rules are generated for the target relation r

1 by-copy rules: $P \rightarrow r(x, \underline{e_2})$

for each $e_2 \in range(r)$

- ★ x was born in Spain \rightarrow x speaks Spanish
- ★ inferred entities: {e₂}

$$conf := rac{|ans([x \leftarrow P, r(x, e_2)])|}{|ans([x \leftarrow P])|}$$

2 by-analogy rules: $P \rightarrow r(x, \underline{y})$

for $y \in Vars(P), y \neq x$

< ロ > < 同 > < 回 > < 回 > < 回 > <

- ★ x has a father z, whose wife is $y \rightarrow x$ has a mother y
- ★ inferred entities: $ans([y \leftarrow P, (x = e_1)])$

$$\mathit{conf} = rac{|\mathit{ans}([x, y \leftarrow P, r(x, y)])|}{|\mathit{ans}([x, y \leftarrow P])|}$$

Scoring+ranking: Maximum Confidence [Meilicke, 2019]

101	
	Ferré)

Examples of correct predictions

On the Mondial dataset, with timeout = 0.1+0.1s

- mountain "Reuss" is in mountain range Alps (0.50 0.38 0.27)
 28 CNs, best explanation: *located in a place speaking Italian and German* (by-copy rule)
- mountain "Matterhorn" is located in Switzerland (0.42 0.36 0.29) 30 CNs, best explanation: two mountains in the same range tend to have the same location (by-analogy rule)

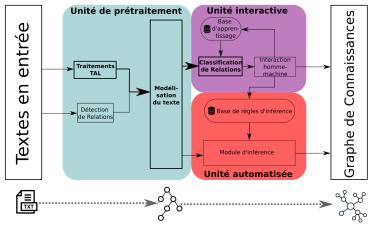
Overview

- From Knowledge Graphs to Graph Concepts
- 2 Generalization: Conceptual Distance
- 3 Similarity Search: Concepts of Neighbours
- 4 Link Prediction
- 5 Application to Relation Extraction from Texts

A (1) > A (2) > A

Application to Relation Extraction from Texts

[PhD work of Hugo Ayats, ICFCA'21, IDA'22]



Key role of concept intents as explanations for inferences

(Sébastien Ferré)

Conclusion and Perspectives

• Strengths

- native interpretability of similarities and predictions (graph pattern-based rules)
- no training phase, works on dynamic data (instance-based)
- efficient anytime algorithm for concepts of neighbors (progressive partitioning of the set of entities)

Weaknesses

- interpretable does not mean explainable
 - post-processing concepts to extract explanations [PhD Ayats]
- lack of approximate matching
 - on concrete domains (strings, numbers, dates)
 - on relational patterns/paths (like SPARQL path expressions)
- efficiency on very large KGs (e.g., DBpedia)

The End

Thanks for listening !

Algorithmic and Practical Aspects

[see ESWC'18 paper on approximate query answering]

- CNN(e, K) are computed by incrementally partitioning E
 - triples describing e are used as discriminating features
 - PRO: the number of clusters is bounded by |E|
- the partitioning algorithm is anytime
 - only coarser partition if stopped before completion
- previous experiments have shown greater efficiency compared to
 - computing conceptual distances with each entity
 - applying query relaxation to the description of e

Scoring and Ranking Inferred Entities

Maximum Confidence (introduced for AnyBURL [Meilicke, 2019])

- The score of each inferred entity e₂ is
 - the list of rule confidence measures (above 0.01)
 - in decreasing order
 - from all rules inferring e₂
 - ex: 0.94 0.86 0.33 ...
- Ranking of all inferred entities
 - in decreasing lexicographic order

e1	0.94	0.86	0.33
e2	0.94	0.86	
e3	0.94	0.67	0.43
e4	0.55	0.43	0.33

Experimental Results: WordNet Benchmarks

		WN18			WN18RR	
Approach	H@1	H@10	MRR	H@1	H@10	MRR
Freq	1.8	5.0	2.9	1.5	4.4	2.6
Latent-based						
DISTMULT	70.1	94.3	81.3	-	-	-
ANALOGY	93.9	-	94.2	-	-	-
KB_LR	-	95.1	93.6	-	-	-
R-GCN+	69.7	96.4	81.9	-	-	-
ConvE	93.5	95.5	94.2	39.0	48.0	46.0
ComplEx-N3	-	96.0	95.0	-	57.0	48.0
CrossE	74.1	95.0	83.0	-	-	-
Rule-based						
AMIE+	87.2	94.8	-	35.8	38.8	-
RuleN	94.5	95.8	-	42.7	53.6	-
AnyBURL	93.9	95.6	95.0	44.6	55.5	48.0
C-NN (ours)	96.7	97.2	96.9	44.4	51.9	46.9
C-NN – best other	+2.2	+0.8	+1.9	-0.2	-5.1	-1.1
C-NN – best rule-based	+2.2	+1.4	+1.9	-0.2	-3.6	-1.1

< □ > < □ > < □ > < 亘 > < 亘 < Ξ < Ξ < Ξ </p>

(Sébastien Ferré)

Experimental Results: Freebase Benchmarks

		FB15k		F	B15k-23	7
Approach	H@1	H@10	MRR	H@1	H@10	MRR
Freq	14.3	28.5	19.2	17.5	35.6	23.6
Latent-based						
DISTMULT	52.2	81.4	63.4	10.6	37.6	19.1
ANALOGY	64.6	-	72.5	-	-	-
KB_LR	74.2	87.3	79.0	22.0	48.2	30.6
R-GCN+	60.1	84.2	69.6	15.1	41.7	24.9
ConvE	67.0	87.3	74.5	23.9	49.1	31.6
ComplEx-N3	-	91.0	86.0	-	56.0	37.0
CrossE	63.4	87.5	72.8	21.1	47.4	29.9
Rule-based						
AMIE+	64.7	85.8	-	17.4	40.9	-
RuleN	77.2	87.0	-	18.2	42.0	-
AnyBURL	80.4	89.0	83.0	23.0	47.9	30.0
C-NN (ours)	82.7	89.0	84.9	22.2	44.6	29.6
C-NN – best other	+2.3	-2.0	-1.1	-1.7	-11.4	-7.4
C-NN – best rule-based	+2.3	0.0	+1.9	-0.8	-3.3	-0.4

(Sébastien Ferré)

Relation Extraction [Ayats, Cellier, Ferré 2021]

• $?r(e_1, e_2)$: Infering a relation given the subject and object entities

Steps

- **(**) compute $CN(e_1, e_2)$, concepts of neighbours of the pair (e_1, e_2)
 - ★ looking for similar pairs
 - graph concepts, conceptual distance, and concepts of neighbors naturally extend to tuples of entities
 - ★ concept intents are two-variable queries: $Q = [x, y \leftarrow P]$
- ② generate rules $P \rightarrow r(x, y)$ for every concept with intent $Q = [x, y \leftarrow P]$ and every relation *r*
- score and rank the relations according to rule confidences (or other scores)
- Issues:
 - there are $|E|^2$ pairs of entities to partition into concepts of neighbors
 - inference assumes the existence of a relationship from e₁ to e₂ two pairs of unrelated entities have no reason to share something

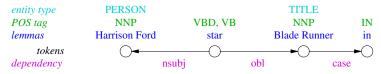
- sentence: "Harrison Ford starred in Blade Runner"
- CoreNLP processing (syntax + semantics)
- modelling as a graph: tokens as entities
- concepts of neighbors CN(BladeRunner, HarrisonFord)
- Inference rules
- Inferred fact: actor(Blade Runner, Harrison Ford)

- sentence: "Harrison Ford starred in Blade Runner"
- CoreNLP processing (syntax + semantics)

Harrison Ford starred in Blade Runner

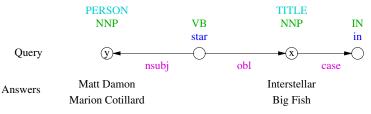
- modelling as a graph: tokens as entities
- concepts of neighbors CN(BladeRunner, HarrisonFord)
- Inference rules
- Inferred fact: actor(Blade Runner, Harrison Ford)

- sentence: "Harrison Ford starred in Blade Runner"
- CoreNLP processing (syntax + semantics)
- modelling as a graph: tokens as entities



- concepts of neighbors CN(BladeRunner, HarrisonFord)
- Inference rules
- Inferred fact: actor(Blade Runner, Harrison Ford)

- sentence: "Harrison Ford starred in Blade Runner"
- CoreNLP processing (syntax + semantics)
- modelling as a graph: tokens as entities
- concepts of neighbors *CN*(BladeRunner, HarrisonFord) only considering pairs of named entities that are related in KG

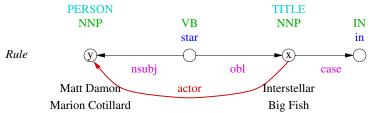


- Inference rules
- Inferred fact: actor(Blade Runner, Harrison Ford)

(Sébast	

4 D N 4 B N 4 B N 4 B N

- sentence: "Harrison Ford starred in Blade Runner"
- CoreNLP processing (syntax + semantics)
- modelling as a graph: tokens as entities
- concepts of neighbors CN(BladeRunner, HarrisonFord)
- Inference rules



Inferred fact: actor(Blade Runner, Harrison Ford)

(Sébasi	

4 D N 4 B N 4 B N 4 B

Experimental Results

- benchmark TACRED
 - collection of sentences from journalistic sources
 - each sentence has two named entities + gold standard relation
 - train/dev/test split
- relation classification:
 - accuracy = 83.6%
 - above the baseline: 80.4%
- relation extraction = detection + classification:
 - F-score = 66.9%
 - below state of the art based on BERT (F-score = 72.7%)
 - above graph convolution networks, which use similar sentence representations (F-score = 64.0-66.4%)
 - we have the benefit of explainable inferences

A B F A B F